
|| Jai Sri Gurudev||
Sri Adichunchanagiri Shikshana Trust ${ }^{\circledR}$ SJB INSTITUTE OF TECHNOLOGY
No. 67, BGS Health \& Education City, Dr. Vishnuvardhan Road, Kengeri, Bengaluru - 560060
Accredited by NAAC, Accredited by NBA. Certified by ISO 9001-2015

Department of Computer Science \& Engineering Assignment

Subject: Automata Theory \& Computability

 Subject Code: 18CS54Sem: V

ASSIGNMENT QUESTION

Module 1
 Why Study theory of computation, Language and String

1. Obtain DFAs to accept strings of a's and b's having exactly one a.
2. Obtain a DFA to accept strings of a's and b's having even number of a's and b's.
3. Give Applications of Finite Automata.
4. Write Regular expression for the following $L=\left\{a^{n}{ }^{m}{ }^{m}: m, n\right.$ are even $\} L=\left\{a^{n},{ }^{m}{ }^{m}\right.$: $m>=2, n>=2\}$.
5.

δ		a	b
p	$\{r\}$	$\{q\}$	$\{p, r\}$
q	I	$\{p\}$	I
${ }^{\mathrm{p}} \mathrm{r}$	$\{\mathrm{p}, \mathrm{q}\}$	$\{\mathrm{r}\}$	$\{\mathrm{p}\}$

Convert above automaton to a DFA.
6. Convert following NFA to DFA using subset construction method.

$\delta \mathrm{N}$	0	1
p	$\{\mathrm{p}, \mathrm{r}\}$	$\{\mathrm{q}\}$
q	$\{\mathrm{r}, \mathrm{s}\}$	$\{\mathrm{p}\}$
$*_{r}$	$\{\mathrm{p}, \mathrm{s}\}$	$\{\mathrm{r}\}$
$*_{\mathrm{s}}$	$\{\mathrm{q}, \mathrm{r}\}$	I

7. Convert the following DFA to Regular Expression

Module 2

Regular Expressions and Languages

1. P.T. Let R be a regular expression. Then there exists a finite automaton $M=(Q, 1, G$, $q 0, A)$ which accepts $L(R)$.
2. Define derivation, types of derivation, Derivation tree \& ambiguous grammar. Give example for each.
3. Obtainan NFA to accept the following language $\mathrm{L}=\{\mathrm{w} \mid \mathrm{w}$ $a b a b^{\mathrm{n}}$ or aba ${ }^{\mathrm{n}}$ where nt 0$\}$
4. Convert the following NFA to its equivalent DFA(10m)(Dec- Jan 2011) (Jun-Jul 12)

5. Define grammar? Explain Chomsky Hierarchy? Give an example (6m)(June- July 2011)
6. Is the following grammar ambiguous

S -> aB | bA
A -> aS |bAA |a
B -> bS $|\mathrm{aBB}| \mathrm{b}$

Module 3
 CFG

1. P.T. If L and M are regular languages, then so is $\mathrm{L} \subset \mathrm{M}$.
2. Write a DFA to accept the intersection of $\mathrm{L} 1=(\mathrm{a}+\mathrm{b})^{*} \mathrm{a}$ and $\mathrm{L} 2=(\mathrm{a}+\mathrm{b})^{*} \mathrm{~b}$ that is for $\mathrm{L} 1{ }^{\wedge} \mathrm{L} 2$.
3. Find the DFA to accept the intersection of $L 1=(a+b) * a b(a+b) *$ and $L 2=(a+b) * b a(a+b) *$ and that is for $\mathrm{L} 1^{\wedge} \mathrm{L} 2$
4. P.T. If L and M are regular languages, then so is $L-M$.
5. Design context-free grammar for the following cases $\mathrm{L}=\{0 \mathrm{n} 1 \mathrm{n} \mid \mathrm{n} \geq 1\}$
$\mathrm{L}=\{$ aibjck $\mid \mathrm{i} \neq \mathrm{j}$ or $\mathrm{j} \neq \mathrm{k}\}$
6. Generate grammar for RE $0 * 1(0+1) *$
7. P.T. If L is a regular language over alphabet S, then $L=6^{*}-L$ is also a regular language.
8. Explain CGF with an example.
9. Explain decision properties of regular language.

Module 4

Context Free and Non Context Free Languages

1. Eliminate the $\mathrm{n}->\mathrm{n}$-generating symb->ls fr->m $\mathrm{S}->\mathrm{aS}|\mathrm{A}| \mathrm{C}, \mathrm{A}->\mathrm{a}, \mathrm{B}->\mathrm{aa}, \mathrm{C}->\mathrm{aCb}$.
2. Draw the dependency graph as given above. A is non-reachable from S. After eliminating A, G1 $=(\{S\},\{a\},\{S->a\}, S)$.
3. Find out the grammar without H - Productions $\mathrm{G}=(\{\mathrm{S}, \mathrm{A}, \mathrm{B}, \mathrm{D}\},\{\mathrm{a}\},\{\mathrm{S}$ o aS $\mid \mathrm{AB}, \mathrm{A}$ -> H, B-> H, D ->b\}, S).
4. Eliminate $n->n$-reachable symbols from $G=(\{S, A\},\{a\},\{S->a, A->a\}, S)$
5. Eliminate non-reachable symbols from S-> aS $\mid \mathrm{A}, \mathrm{A}->\mathrm{a}, \mathrm{B}->\mathrm{aa}$.
6. Give leftmost and rightmost derivations of the following strings
a) 00101
b) 1001
c) 00011
7. Construct DPDA which accepts the language $L=\left\{w^{\mathrm{w} w} \mathrm{R}^{\mathrm{R}} \mid \mathrm{w}\{\mathrm{a}, \mathrm{b}\}^{*}, \mathrm{c} \Sigma\right\}$.

Module 5 Turing Machine

1. Explain with example problems that Computers cannot solve.
2. Explain briefly the following Halting problem.
3. Explain Programming techniques for Turning Machines
4. Design a Turing machine to accept a Palindrome.
5. Design a TM to recognize a string of the form $a^{n} b^{2 n}$.
