

|| Jai Sri Gurudev|| Sri Adichunchanagiri Shikshana Trust® SJB INSTITUTE OF TECHNOLOGY

No. 67, BGS Health & Education City, Dr. Vishnuvardhan Road, Kengeri, Bengaluru -560060 Accredited by NAAC, Accredited by NBA. Certified by ISO 9001-2015

Department of Computer Science & Engineering

Assignment

Subject: Automata Theory & Computability

Subject Code: 18CS54

Sem: V

5.

ASSIGNMENT QUESTION

Module 1 Why Study theory of computation, Language and String

1. Obtain DFAs to accept strings of a's and b's having exactly one a.

.

- 2. Obtain a DFA to accept strings of a's and b's having even number of a's and b's.
- 3. Give Applications of Finite Automata.
- 4. Write Regular expression for the following $L = \{a^n b^m : m, n \text{ are even}\} L = \{a^n, b^m : m \ge 2, n \ge 2\}.$

δ		а	b
р	{r}	{q}	{ p , r }
q	Ι	{ p }	Ι
*r	{p,q}	{r}	{ p }

Convert above automaton to a DFA.

6. Convert following NFA to DFA using subset construction method.

.

δΝ	0	1
р	{p,r}	{q}
q	{ r , s }	{ p }
*r	{ p , s }	{ r }
*s	$\{q,r\}$	Ι

7. Convert the following DFA to Regular Expression

- 1. P.T. Let R be a regular expression. Then there exists a finite automaton M = (Q, , G, q0, A) which accepts L(R).
- 2. Define derivation , types of derivation , Derivation tree & ambiguous grammar. Give example for each.
- 3. Obtain an NFA to accept the following language L={w|w ababⁿ or abaⁿ where n t 0}
- 4. Convert the following NFA to its equivalent DFA(10m)(Dec- Jan 2011) (Jun-Jul 12)

- 5. Define grammar? Explain Chomsky Hierarchy? Give an example (6m)(June- July 2011)
- 6. Is the following grammar ambiguous $S \rightarrow aB \mid bA$

 $\begin{array}{l} A \mathrel{\mathop{\rightarrow}} aS \mid bAA \mid a \\ B \mathrel{\mathop{\rightarrow}} bS \mid aBB \mid b \end{array}$

Module 3 CFG

- 1. P.T. If L and M are regular languages, then so is $L \subset M$.
- 2. Write a DFA to accept the intersection of L1=(a+b)*a and L2=(a+b)*b that is for $L1^{L2}$.
- **3.** Find the DFA to accept the intersection of L1=(a+b)*ab (a+b)* and L2=(a+b)*ba (a+b)* and that is for L1 ^ L2
- 4. P.T. If L and M are regular languages, then so is L M.
- 5. Design context-free grammar for the following cases L={ $0n1n | n \ge l$ }
 - L={aibjck| $i \neq j$ or $j \neq k$ }
- 6. Generate grammar for RE 0*1(0+1)*
- 7. P.T. If L is a regular language over alphabet S, then $L = 6^* L$ is also a regular language.
- 8. Explain CGF with an example.
- 9. Explain decision properties of regular language.

Module 4

Context Free and Non Context Free Languages

- 1. Eliminate the n->n-generating symb->ls fr->m S -> aS | A | C, A ->a, B -> aa, C -> aCb.
- 2. Draw the dependency graph as given above. A is non-reachable from S. After eliminating A, $G1 = (\{S\}, \{a\}, \{S \rightarrow a\}, S)$.
- 3. Find out the grammar without H Productions G = ({S, A, B, D}, {a}, {S o aS | AB, A -> H, B-> H, D ->b}, S).
- 4. Eliminate n->n-reachable symbols from $G = (\{S, A\}, \{a\}, \{S \rightarrow a, A \rightarrow a\}, S)$
- **5.** Eliminate non-reachable symbols from $S \rightarrow aS \mid A, A \rightarrow a, B \rightarrow aa$.
- 6. Give leftmost and rightmost derivations of the following strings

a) 00101 b) 1001 c) 00011

7. Construct DPDA which accepts the language $L = \{wcw^R | w \{a, b\}^*, c \Sigma\}$.

Module 5 Turing Machine

- 1. Explain with example problems that Computers cannot solve.
- 2. Explain briefly the following Halting problem.
- 3. Explain Programming techniques for Turning Machines
- 4. Design a Turing machine to accept a Palindrome.
- 5. Design a TM to recognize a string of the form $a^{n}b^{2n}$.